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SOLIDIFICATION OF A LIQUID ON A MOVING SHEET 
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Abstract-This paper considers the growing of a solid layer on a sheet that moves through a liquid and which 
is kept at a temperature below freezing. The convection in the liquid is fully taken into account. It is found 
that the thickness of the layer is proportional to the square root of the distance from the point where the sheet 
enters the body of liquid. The main difficulty lies in determining the factor of proportionality in this 
relationship. Asymptotic expressions are derived for this factor in the case where latent heat is much greater 
than sensible heat. Also presented are approximate solutions valid for very small (liquid metals) and very 

large (polymers) values of the Prandtl number. 

NOMENCLATURE 

VIM&’ (6.3); 

expansion coefficient (4.9); 

specific heat of liquid at constant 
pressure [J.kg-‘.K-‘1; 
function defining the velocity field (3.1); 
expansion function (4.2); 
function defined by (5.5); 
thermal conductivity of liquid 
[J.m-‘.s-‘.K-‘]; 

thermal conductivity of solid 
[J.m-’ .s-l .K-‘I; 

k/k ; 

latent heat of fusion [J/kg]; 

c&J; 
temperature of ambient fluid [K]; 
temperature of the sheet [K]; 
freezing temperature [K] ; 
velocity component in the x-direction [m/s]; 
velocity of the sheet [m/s]; 
velocity component in the y-direction [m/s] ; 
coordinate measuring distance’along 
the sheet [m] ; 
coordinate measuring distance from 
the sheet [m]. 

Greek symbols 

Y, PdPi 

6, thickness of solid layer [m]; 

‘IT similarity variable (3.3); 

lS, valueofqaty=?I; 

V, approximate value of qs (4.14); 
* 
9, rl-rls; 
0, normalized temperature (3.2); 
0 “3 expansion function (4.3); 
e 8, value of 6 at freezing; 
k, thermal diffusivity of liquid [m’/s]; 

K,, thermal ditfusivity of solid [m2/s]; 

PL, transformed similarity variable (5.5); 
v, kinematic viscosity of liquid [m’/s] ; 

Pt density of liquid [kg/m31 ; 
PS? density of solid [kg/m31 ; 

0, Prandtl number: V/K; 

*s, Prandtl number: V/K,; 

w, &~Llcp/(To- T,); 

oJ, parameter defined by (4.13); 

0, w/e; 
Q, K( 1 - e,). 

1. INTRODUCrION 

THE SOLIDIFICATION of a liquid on a wall cooled to 
below the freezing point has been the subject of many 
theoretical studies. Practical applications of this work 
may be found in various fields of engineering. In 
metallurgy, for example, we have the application of 
thin metallic layers on solid walls, thin wires, tubes etc. 
When a liquid metal is conducted through a tube or a 
channel, it is important to make sure that no blockage 
will occur through the development of a solid internal 
crust [l]. Similar applications, such as ice formation 
inside water mains, were mentioned by Zerkle et al. [2]. 
The solidification of polymeric liquids is an important 
process in the electrical and chemical industries. This 
process finds application in the casting of an insulating 
coating on electricity cables or wires. In semicon- 
ductor technology the growing of silicon layers etc. is 
of importance. 

Apart from this variety of applications, there are 
also a variety of ways in which solid layers may be 
grown. The simplest way is to keep the system at rest 
and to let the solidification take place through pure 
temperature action. Some recent references are [3-61. 
Another possibility is to force the liquid to flow along 
the wall on which the solidification is to occur. 
Examples are given in references [7-l 11. In [ 121 the 
solidification of a liquid film on a vertical wall has been 
studied. 

A third way to grow a layer is to let the subcooled 
wall move through a liquid otherwise at rest. The 
solidification will then occur in a boundary layer near 
the moving wall. In this way layers can be created 
continually by leading the bare wall into the liquid at a 
certain location and by taking it out of the system at a 
point where the layer has grown to the required 
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thickness. Instead of varying in time, as was true in the 
first class of problems, the thickness of the layer now 
varies spatially. Moreover, by controlling the velocity 
of the wall, we are able to influence the rate at which 
the layer will grow in the lengthwise direction. From 
the point of view of process technology this method 
may be regarded as very attractive. It is likely that the 
yield of a continuous process will be much larger than 
that of a batch-type process. 

An interesting application of this technique is 
described in a recent paper by Chopra et al. [ 131. To 

FIG. 1. Geometrical configuration. 

produce a continuous lead sheet they use a rotating transport of heat. To describe the motion of the fluid 

drum which is slightly immersed in a melt. The drum is we have , 
cooled internally so that the surface w’ill be at a 
temperature below the freezing point, even if it is in 

g+!yo 
dY 

(2.21 

contact with the melt. As a result a solid layer will grow 
on the drum. At the upper side this layer is taken off the au au ah 

drum in the shape of a continuous lead sheet. “While”, 
u-+v-=v- 

ax ay ay2 
(2.3) 

to cite the authors, “this process is now well estab- 
lished, little is known from a fundamental point of view 

which are boundary-layer-type equations. It is well 

about the solidification and heat-transfer process 
known that these equations may be used if u,x/v >> 1, 

between the casting drum and the lead bath’. This 
i.e. where x is large enough. However, this condition 

shows that there is a need for some theory to describe 
does not seriously restrict the applicability of the 

this kind of process. 
results. For water, e.g. we have v - 10m6 m2/s, so that 

In this paper we intend to consider a sheet which at 
for u, N 0.1 m/s the condition is x >> 10e5 m. Only in 

some location enters a body of liquid. The sheet is kept 
the case of a very slowly moving plate the results will be 

at a temperature below freezing. We shall consider 
of limited value. For many other materials similar 

steady conditions only, where the solid layer has 
conditions can be found. Clearly the equations are 

assumed its perfect state. The main object of the paper 
considered in the region y > 6. 

will be to determine the thickness of the layer as a 
Transport of heat takes place both in the fluid and in 

function of the distance from the inlet. 
the solid layer, i.e. 

From a mathematical point of view the problem aT aT a2T 
considered here is related to the problem area con- Uz+O-=xz if y>6 (2.4) 

cerned with the flow about and the cooling of con- 
ay ay 

2 

tinuous moving objects, such as sheets or cylinders. A 
few references are [14-171. 

usg=rcs” if O<y<S. 
aY= 

(2.5) 

The boundary conditions of this problem are pre- 

2. FORMULATION OF THE PROBLEM 
scribed at y = 0, y = 6 and y -+ co. At the surface of the 
sheet we simply have 

We consider a continuous moving sheet which 
enters a semi-infinite fluid region through a slit in a T = T, at y = 0. (2.6) 

bounding wall. This wall is assumed to be insulated. 
The heat capacity of the sheet is assumed to be large, so 

To describe the ambient conditions we put 

that it will remain at a fixed temperature T,, which is u+O, T-+T, if y-+co. (2.7) 

below the temperature T, at which change of phase will 
take place. 

At the interface the conditions are more complicated. 

The surrounding fluid has a temperature To which is 
First we have a prescribed velocity and temperature 

larger than T,, i.e. u = US, T=T, at y=6. (2.8) 

T,< T,< To. (2.1) 
Next we have to demand continuity of mass transport 
through the interface. By considering an infinitesimal 

The sheet moves at a velocity u,. Under these con- pill-box, with one side in the fluid and one in the solid, 
ditions the fluid will solidify near the moving surface we are able to derive the following condition 
and we obtain a solid layer which becomes thicker as 
we move further away from the slit (Fig. 1). 

d6 

[ 1 
d6 

To describe this problem we need a coordinate 
P “z-U y=d+o = P&s~. (2.9) 

system. At any point in the fluid or in the solid layer, x The thermal balance at the interface can also be 
is the distance from the bounding wall and y is the 
distance above the sheet. The position of the 

given by means of the pill-box model. Applying 

solid-liquid interface is given by y = 6(x). 
boundary-layer approximations we easily find 

The differential equations governing this problem 
describe both the transport of momentum and the 



3. SOLUTION 

The problem can be solved by means of a similarity 
transformation. We shall present this transformation 
directly, omitting a detailed description of how it can 
be obtained. We then have 
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The boundary condition (3.11) can now be rewritten as 

q = rjs+o: 

“‘(l-es) 
exp( - k) 

erf(r],af’2) 

T = T,-(To-T’Mq) (3.2) 

(3.3) 

It can be proved by substitution that (3.1) satisfies (2.2). 
For the similarity transformation to be valid it is 
necessary that the solid-liquid interface can be repre- 
sented by a fixed value of q, that is by q = vs. It then 
follows that 

4% 1/Z 
6=q, - ( > (3.4) 

us 

where ls is an unknown that we shall find later by 
integrating the complete set of equations and boun- 
dary conditions. This set can be found by substitution 
of (3.1)-(3.4) into (2.3)-(2.10). The result is 

It follows that w >> 1 in most practical cases. f”’ + 2ff” = 0 (rlsGrl<a) (3.5) 

8”+2rJf@ = 0 hs<V<~) (3.6) 

8” +2a,r$ = 0 (0 G rl < V,) (3.7) 

VJ=o: e=1 (3.8) 

V = rls f = Ytls f’ = 1 (3.9) 

0 = 0, (3.10) 

ae ae 

g r)‘*r+O = KG *=*.-o+W9s 
(3.11) 

v+co: f’+0, e-0 (3.12) 
f(v) = : _Mci)(ws) 

n=O 

Integrating (3.6) from 9 = qs to rl = co we can easily 
prove that fJ’(q3 < 0. From (3.15) we then see that o 
+ co, leaving the remaining parameters unchanged, 
necessarily implies fan -+ 0. In consequence, we seem 
justified in searching for a solution valid for small 
values of vs. We also note that the equations (3.5)-(3.6) 
do not change under the transformation q = 1 -u,, 
whence we can solve the system by introducing the 
expansions 

where 

2yaL 
W= 

c,(T, - Tf) ’ 
(3.13) 

A prime stands for differentation with respect to the 
argument. It is clear that the temperature field and the 
flow field are coupled inasmuch as qs is an unknown. In 
general, this will complicate the numerical integration 
of the present system. Another complication is the 
large number of parameters influencing this problem, 
viz. u, os, y, K and w. We shall show later on that 
matters can be simplified considerably by assuming 
certain parameters to be large or small. We shall 
succeed in finding solutions that reveal an explicit 
dependence upon the parameters of the problem. 

The integration of (3.7) can be done immediately: 

(3.15) 

where the derivative is understood to be taken at the 
fluid side of the interface. The remaining part of the 
paper will be devoted to the solution of the system 
consisting of the equations (3.5), (3.6), (3.8)-(3.10), 
(3.12) and (3.15). 

4. THE CASE q, << 1 

For many materials the latent heat L predominates 
over the sensible heat, i.e. L >> c,AT if the temperature 
differences are not extreme. This means that w >> 1 if 
the Prandtl number CT is not too small. In a later section 
we shall consider the case of small cr in more detail. For 
the moment we shall assume a Prandtl number of 
order unity. It will be of interest to determine the value 
of cu for a typical fluid in this Prandtl number 
range: water. For water we have CT = 13.4, L = 334000 
J/kg,y=0.92,~,=42OOJ~kg-‘~K-‘,sothat 

1960 K 

O_(T,- 
(4.1) 

wd = 4 f e.(ri)h) 
n=O 

(4.3) 

and substituting these in the requisite equations and 
boundary conditions. In doing so, we shall disregard 
the boundary condition (3.15) for the moment. The 
perturbation functions satisfy the equations. 

fd”+Zfofd’ = 0 

f;“+2fof;‘+2f{f, = 0 (4.4) 

f;’ + 2fo f;’ + 2fd’f2 = - 2fl f; 

w; +20foeb = 0 

e; +20(f,B; +flPo) = 0 

e; +2g(foe; +fie; +f2eb) = 0 
e = 1 - (l-e,) erf (vf’2) (O G q < h).(3.14) erf (q,aj”) ’ _____________________________________________ 

(4.5) 



312 H.K. KUIKEN 

and the boundary conditions are 

F/=0: f,=O (n+l), f,=l 

f,’ = 0 (n # O), .fd = 1 
(4.6) 

en = 0 (PI # O), e* = 1 (4.7) 

tj-+co: x-0, t?,-+o. (4.8) 

The function fd describes the well-known 
Sakiadis-Howarth velocity profile [18,19]. The equa- 
tions can be integrated numerically without much 
difficulty. Results which are useful for the present 
analysis are tabulated in Table 1. Using this table we 
are able to find the value of the expression 

B’(qs) = -c,-cc,r/s-c~~s”+ ‘.. (4.9) 
where 

cj = -&y%:(O). (4.10) 

Table 1. Numerical figures which are useful in the calcuation 
of (4.9) 

0 -f%(O) --K(O) -e;(O) 

:; 
0.3 

0.145725 0.267358 0.08584 0.19012 0.0410 0,0743 
0.372512 0.30407 0.1115 

0.4 0.465730 0.42357 0.1485 
0.6 0.627041 0.67143 0.2300 
0.8 0.765217 0.92512 0.3218 
1.0 0.887496 1.18148 0.4232 
2.0 1.366517 2.47376 1.0510 
3.0 1.731765 3.76748 1.8406 
4.0 2.038364 5.05945 2.7616 
6.0 2.550827 7.63845 4.9333 
8.0 2.981643 10.2133 7.4799 

10.0 3.360587 12.7848 10.351 

Having found the formal solution, which is valid for 
a given but arbitrary value of qs c 1, we are now in a 
position to determine the true value of qs by demand- 
ing that (4.9) should be equal to (3.15). 

Expanding (3.15) for small values of 1, we obtain 

where 

R = K(l-6,). 

It follows that os should be calculated from 

0 = -n+c,~,+&,rl;fCsf1:+ .I. 

where 

(4.12) 

Q = w+c, +jcT@. (4.13) 

Since we assume o >> 1, i.e. ti >> 1, it is clear that a first 
approximation can be obtained by neglecting terms of 
O(r&. The result is 

WGl -- 
t?s N % = 1 + (lf4R&/c;)“2 . 

(4.14) 

Including the term c& we obtain a better apprbxi- 
mation 

1 c,fi,2 
yls -ij$ l- 

(ct, + 4iTti~)‘/z I . 
(4.15) 

The applicability of these results is restricted by the 
condition qr CC 1, i.e. by q, K 1. Therefore, the values of 
W, Q and co should be such that the R.H.S. of (4.4) is 
much smaller than unity. 

5. THE CASE CT<< 1 

If the Prandtl number is small, the temperature 
boundary layer will extend far beyond the viscous 
boundary layer. We may therefore obtain a first ap- 
proximation of the temperature field by substituting the 
asymptotic velocity field into (3.6). The solution then 
satisfying (3.9) is simpiy 

0 - e,exp{-201f(oo)(rl-rls)~. (5.1) 

As this solution must also satisfy (3.15) we find 

where we have introduced 

15.2) 

r;, = w/a. (5.3) 

Since we not only have the Prandtl number ET, but also 
the Prandtl number CI, based on the properties of the 
solid state, it will be convenient to introduce the ratio 

s = cr&. (5.4) 

It does not seem unreasonable to assume that D << 1 
implies a, CC 1 and that s is of order unity. 

For a given value of q,, we can also determines 
by integrating equation (3.5) using the conditions (3.8), 
(3.9) and (3.12). Performing such an integration for 
various values of qs and y we are able to produce the 
graphs of Fig. 2. The value of q5 is then determined by 
the intersection of (5.2) and the requisite graph of Fig. 
2. 

Iff(co) is large, i.e. if qJ is large, Fig. 2 cannot be used. 
However, we are now able to do an asymptotic 
analysis. Indeed, if we introduce the transformation 

5 

f toa 

t 4 

3 

2 

1 

0 1 2 3 
-k4 

FIG. 2. The value of f(so) as a function of qI. 
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which is valid near the solid-liquid interface. The 
ensuing equation can be solved analytically : 

FIG. 3. 

By taking the first derivative of (6.2) with respect to q 
and demanding that this should be equal to (3.15) we 
obtain an algebraic equation for the unknown vs. In 
terms of the more suitable unknown 

b = ?#2 (6.3) 

this equation reads 

6, 711/2 

exp(y2b2) erfc(yb) +yuib 

f&1/2 

symptotic behaviour of qS valid for g. > 5 and 
CT<< 1. 

(6.4) 

the system for the function f is redefined as follows 
In general, the value of b must be calculated numeri- 
tally from (6.4). In view of the large number of 

F”‘+2FF” = 0 (5.6) parameters involved it does not seem possible to 
present useful tables or graphs. Of course, if b is 

F(0) = y, F’(0) = rJ;2, F’(m) = 0. (5.7) extreme we could attempt to derive approximate 

The system admits the solution results. Thus we have 

F m y+ty-1~;2(1-e-2y@)+O(q;4) (5.8) 

when Q >> 1. This yields 

f(~)-r?,+(2yq,)-‘+O(rl,3). (5.9) 

We can now determine q3 by equating (5.2) and (5.9). 
Using the first term in the expansion (5.9) only we are 
able to derive the result of Fig. 3. 

6. THE CASE D >> 1 

In larg~~andtl-num~r fluids the temperature 
boundary layer is very much thinner than the viscous 
boundary layer. We may therefore derive an approx- 
imate solution for the temperature field by substituting 
into (3.6) the linear approximation 

f * (r-I)%+? (6.1) 

b- 
7F2i-ie; l 

l+{l+Kn(~+4n-‘e,y+~~~)e;2}“2 
(6.5) 

if b << 1, which is the equivalent of (4.14) valid for a 
large. For b >> l(6.4) remains an implicit equation for b 
and the asymptotic result will be of limited usefulness. 

7. CONCLUSIONS 

The main object of this paper has been to determine 
the thickness of the solid layer, 6. By (3.4) this thickness 
was shown to be related to a dimensionless parameter 
c, which is a function of a great many physical 
constants such as o, a,, y, K and &. In general, this 
functional dependence cannot be given explicity. How- 
ever, we were able to derive useful asymptotic results 
that seem to cover almost all practical cases within the 
limits given by the conditions of Section 2. 

FIG. 4. Streamline behaviour before and after freezing (r = 0.5). 
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It is also worthy of note that the flow field reveals freezing point, Int. J. Hem Mass Trunsjb 9, 702-704 
some peculiar characteristics. In Fig. 4 we have 
presented some flow lines for y < 1 and these show that 
fluid particles reach a minimum distance from the 
surface of the sheet before actually becoming part of 
the solid layer. The reason, of course, is that the 
material expands upon solidification. In order to 
demonstrate the effect clearly we have done the 
calculation for the rather unrealistic value y = 0.5. 
When considering the graph one ought to realize that 
the normal coordinate has been blown up, again to 
show the effect clearly. 
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SOLIDIFICATION D’UN LIQUIDE SUR UNE PLAQUE MOBILE 

R&sum&-On considtre la croissance d’une couche solide sur une plaque qui se d&place dans un liquide et 
qui est maintenue 4 une temp&rature au dessous de celie de so~dification. La convection dans le liquide est 
compl~tement prise en compte. On trouve que l’kpaisseur de la couche est proportionneIle B la racine 
Carrie de la distance & partir du point oti la plaque p&&e dans le liquide. 

Le difficult& principale est la ditermination du facteur de proportionnalit& Des expressions asymp- 
totiques sent obtenues pour ce facteur dans le cas oti la chaleur latente est tr&s grande par rapport & 
la chaleur sensible. On presente aussi des solutions approchkes valables pour des valeurs t&s petites 

(mCtaux liquides) et t&s grandes (polym&es) du nombre de Prandtl. 

DAS ERSTARREN EINER FL~SSIGKEIT AUF EINEM SICH BEWEGENDEN BAND 

Zusammenfassung-Die Arbeit betrachtet das Anwachsen einer erstarrten Schicht auf einem Band, 
welches sich durch eine Fliissigkeit hindurch bewegt und auf einer Temperatur unterhalb der Erstarrungs- 
temperatur gehalten wird. Dabei wird die Konvektion der Fhissigkeit mitberiicksichtigt. Es zeigte sich, 
da13 die Eisschichtdicke proportional der Quadratwurzel aus der Entfernung von der Eintauchstelle auf 
dem Band ist. 

Die Hauptschwieri~eit liegt in der ~stimmung dieses Proportional~t~tsfakto~. Fiir den Fall, daB 
die latente W&me erheblich gr6Rer als die Ihlbare W&me ist, werden &ymptotische Ausdriicke fiir 
diesen Faktor abgeleitet. AuBerdem werden Niiherun&iisungen fiir sehr kleine (Fliissigmetalie) und sehr 

groDe (Polymere) Prandtl-Zahlen angegeben. 

3ATBEPfiEBAHME_?KHfiKOcTM HA 
~EP~~EqA~~E~C~ IlJlACTMHE 

~0Ta~~~ - B cTaTbe paccMarpesaeTcR POCT cnofi Tsepnoro aei.uecTi3a Ha nnacrmie, nepeMe- 
uialoule&cn a XMKOCTH H iiMeKX&% TeMnepaTypy HWMe TO’IKR 3aMep3aHHX C yYeTOM KOHBemHIl a 
mnnlt0c-r~. HafiAeHo, wo Tonu3iHa cnofl nponopukionanbHa KaanpaTHoMy ~0pHto paccTormin OT 
TOYKH BXOnanJlaCTliHbI B~R~KOCTb.DCHOBHaRTpy~HOCTbCOCTOIlnaBOnpeAeneHll~KO3~~llq~eHTa 
npOnOpLIAOHaJlbHOCTlr B 3TOM COOTHOILleHHH. BblEeaeHbl aCHMnTOTHYeCKRt? BblpaXCeHHn ZlnR KO- 
3~@AUUeHTa flpOnOpUHOHa3lbHOCTH B CnyUae, KOrna 3HaYeHHe CKpblTOa TenJTOTbl HaMHOrO ripe- 
BOCXOAHT BennYmiy TennocoAepXasHP. np&%BOnfiTCfl TaKXe npti6ne~eHHbte pemeesa, CnpaBeEnx- 
BbIe .LUIit OWHb MELJlbfX (XbfAKHe MeTWlnbl) A OYeHb 6onbmnx (~On~Mepbi ) 3HaYeHHk YHCJIP ~PaH~TIIff. 


